THE BEAUTIFUL FORMULA LANGUAGE allows to create new compositions and to notate already existing paintings.

We are constantly working on the improvement of THE BEAUTIFUL FORMULA LANGUAGE. Please, feel free to send us your suggestion, comment or any kind of question.

Oleksiy Koval and THE BEAUTIFUL FORMULA COLLECTIVE

SIGNS AND SYMBOLS

SIGNS AND SYMBOLS

*U*UNIT

*M*METER

*A*AREA

*T*TAKT

*R**RHYTHMICAL MOTIVE*

*E**ELEMENT*

*P**PROCEDURE***#**

*ENTRY*

*****

**hits the meter**

**[]**

**within the same area**

**#(n)**

**number of entries**

**∞**

**number of entries flexible**

**(n)**

**size of unit**

**≈**

**size of the unit is corresponding for all elements**

**\ bigger than**

**/ less than**

**||**

**order fixed**

**>**

**n occupy n**

**->**

**go to**

**{**

**n out of n possible**

**+**

**has to touch**

**_**

**has not to touch**

**≠**

**not**

**V**

**vertical**

**H**

**horizontal**

**F**

**flexibel**

**ⁿ**

**ordinal number**

**L**

**line**

**{ n } polygon with n edges**

*U *UNIT

The **unit** defines the basic size of any kind of mark on the surface. 1 is the smallest size of a mark, 2 is twice as big, 3 is three times bigger and so forth…

Examples: 1,2,3

*M* METER

The **meter** is a fixed point with a surrounding **area**.

The **meter** is used to accomplish an equal partition of the surface.

A **meter** is numbered from left to right and top to bottom.

Examples: 1/4, 1/9, 1/16, 1/25

**Meters**with the additional letter

**b**include the surface border and the four corners.

*A* AREA

The **area** surrounds the **meter** and is defined by the rows and columns between **meters**. The **area** and its **meter** have the same numbering.

Examples: 1/4, 1/9, 1/16, 1/25 & 1/4b, 1/9b, 1/16b, 1/25b

*T* TAKT

The **takt** is a fixed number of **units** during one single **entry**.

Examples: takt 2, 3, 4 & 5 (A T2, B T3, C T4, D T5)

*R* RHYTHMICAL MOTIVE

The **rhythmical motive** is a fixed sequence of **units** during one single **entry**.

Examples: 2,2,3,1 or 1,2,1,3,1,5

*E* ELEMENT

The **element** is a unique character of a **unit**.

**Elements** are named with a, b, c …

Examples:

M 1/4

R 2,2,3,1

E a,b,c,d

R 2,2,3,1

E a,b

P

a #∞

b M4 [*2,2,3,1] #1

**
**(n)

**size of unit**

** **

M 1/4

R –,–,–,–,– (1-5) (size of unit can vary from 1-5)

E a

P [*a] > 1{M1/4

**
**≈

**size of the unit is corresponding for all elements**

M 1/4

A 1/4

R 2,2,3,1

E a,b,c,d ≈

P

a A1[*2,2,3,1]

b A2[*2,2,3,1]

c A3[*2,2,3,1]

d A4[*2,2,3,1]

**
**\

**bigger than**

** **

A 1/4

E a

P [*-\(3),2,2,3,1] > 1{A1/4

**
**/

**less than**

** **

A 1/4

E a

P [*-/(1),2,2,3,1] > 1{A1/4

** **

**||**

**order fixed**

M 1/4

R 1,1,1,2,3

E |a,b,c,d| (the entry of the elements has to be in the same order)

P

M1 [*a]

M4 [*a,b,c,d]

**>**

**n occupy n**

M 1/4, 1/9

R 2,2,3,1

E a,b

P

M 1/4 [*a] > M4

M 1/9 [*b] > M5

** **

**{**

**n out of n possible**

M 1/4

R 2,2,3,1

E a,b

P

[*a]

[*a]

[*a]

[*a,b] b > 1{4[a]

b has to choose one of the 4 areas already taken by a

** **

**+**

**has to touch**

M 1/4

R 1,2,1,3,1,5

E |a,b,c|

P *a+b+c

** **

**_**

**has not to touch**

A 1/9b

R 2,2,3,1

E a,b,c,d ≈

P

a_b_c_d

a A9[2+2+3+1]

b A9[2+2+3+1]

c A9[2+2+3+1]

d A9[2+2+3+1]

** **

**≠**

**not**

M 1/4

R 2,2,3,1

E |a,b|

P

A1 [≠*a]

A2 [≠*a]

A3 [≠*a]

A4 [≠*a]

b M1 *2, M2 *2, M3 *3, M4 *1

** **

**V**

**vertical**

M 1/9

R 2,2,3,1

E a

P a > 3{1/9 [*a]+[*a]+[*a] V

** **

**H**

**horizontal**

M 1/9

R 2,2,3,1

E a

P a > 3{1/9 [*a]+[*a]+[*a] H

** **

**F**

**flexibel**

M 1/9

R 2,2,3,1

E a

P a > 3{1/9 [*a]+[*a]+[*a] F

** **

**ⁿ**

**ordinal number**

A

A¹ 1/4

A² 1/9

R 2,2,3,1 & 1,2,1,3,1,5

E a

P

a A¹ A3 [*2,2,3,1]

a A² A8 [*1,2,1,3,1,5]

** **

**L**

**line**

A 1/144 (L 1-12)

E a

P

L1 A2 [(1)]

L2 A1 [(3)]

L3 A6 [(2)]

L12 A11 [(2)]

** ****{ n }**

**polygon with n edges**

A 1/4, 1/9, 1/16

E a,b,c

P

a{3} A1/4

b{4} A1/9

c{5} A1/16

**æ**

**all**

M 1/4 & 1/9

E a

P a(-)+*æ13M

Keep this going please, great job!

LikeLike